Tutorial 7: Speeding up your MATLAB code

Mex file generation

You can use MATLAB coder app to generate MATLAB executable (mex) files. Mex files run faster
than the scripts.

Exercise 4

= Let’s create a simple program and save it as ‘Tute7_4.m’.

clear all, close all

= Now, create a function to add two numbers.

clear all, close all

a =3;

b=2;

c = addme (a,b)

function ¢ = addme (a,b)
c=a"2+b;

end

= |Let’s move the function to a new file and save it as, ‘addme.m’.
= Now, we have two files- ‘Tute7_4.m’ and ‘addme.m’.

= We can convert our function into a mex file.

= From MATLAB apps menu, open MATLAB Coder.

= Select addme function and click Next.

s}

L ke g Fiish @B

MATLAB Coder ’

Entry-Point Functions:

addme # X

+ Add Entry-Point Function

Project location: | E\Matlab_tests\Mex_generation\addme.prj

Numeric Conversion: |Nene hd

I e

= Next, you have to define input types for your function. This can be done by selecting the
main script which calls the ‘addme’ function. Browse and select ‘Tute7_4.m’ and click on
‘Autodefine Input Types’. Click Next.

2] MATLAB Coder - addme.prj — o x

7 D»» Define Input Types e

To convert MATLAB to C, you must define the type of each input for every entry point function.
Learn more

To automatically define input types, call addme or enter a script that calls addme in the MATLAB
prompt below:

>> Tute7_¢ v (-

Autodefine Input Types

e X
) addmem Number of outputs: | 115
a double(1 x 1)
b double(1 % 1)
Add global
£ Back Next

= Then, MATLAB will check for runtime issues. In the next window, click on ‘Check for issues’.
= [|f noissues were detected you will see a window like below. Click Next.

[MATLAB Coder - addme.prj _ o %
B Check for Run-Time Issues SETTINGS ~ CHECK FOR ISSUES v @3
) agql

This step creates a MEX function from your MATLAB function(s), invokes the MEX function, and
reports issues that may be hard to diagnose in the generated C code. Learn more

Enter code or select a script that exercises addme:
>> Tuce?_d| v

Collect MATLAB line execution counts Resetline execution counts | Check for Issues

@ Noissues detected. View MATLAB line execution counts

L L w

Generating trial code Building MEX Running test file with MEX

Target Build Log | Potential Differences | Test Output

Test Output — Tute7_4.m (10/05/15 11:43)

= |n the next window, select Build type as ‘MEX’, and click Generate.
= After generating the mex file, it will show a build succeeded message.

[2] MATLAB Coder - addme.prj - [u] X

D Generate Code GENERATE v VERIFY CODE

W Source Code
addme

The C code that is generated for a MEX ile contains exira checks and

MATLAB interfacing logic that is not suitable for production code. To
code that is

MATLAB, change the output type to library or executable,

[_coder_addme_api.c
[_coder_addme_info.c
[_coder_addme_mex.c
[addme_data.c

[addme_initialize.c

[addme terminate.c
[B) addme.c

B c_mexapi_version.c
_coder_addme_apih
B _coder_addme_info.h
[_coder_addme_mexh
addme_data.h

Continue

Target Build Log | Variables

addme inttializeh Variable Type size
B sddme terminateh a

a:j”"ef:y'ﬂ”‘ a double %1
D addme.

B t_nonfiniteh b double Tl
B rtwtypesh El

[addme_mex_mex.arf < double 1x1

[4) addme_mex.mexwtd
4 report.midatx

-

= Click Next.

Now, modify your ‘Tute8 4.m’ code as follows to use the mex file. New mex file does the same task

but it is faster.

clear all,

£ MATLAB Coder - addme.pij - o x
P

P2 Finish Workflow

Qf MEX Generated Successfully

You can now use the MEX function to accelerate MATLAB code. Learn more

Project Summary

Functions #) addmem
Project Type. MATLAB Coder
Numeric conversion None

Project File [l addme.prj

Generated Output

CCode E\Matlab_tests\Mex_generation\cedegen\mex\addme
Binaries [4) EAMatlab_tests\Mex_generation\addme_ mexmexwsd
Reports [#] Code Generation Report

close all

c= addme mex (a,b)

= Let’s check the speeds of the two functions by adding tic,toc commands.

clear all,

a =3;

close all

b=2;

tic
c=addme (a, b) ;
toc

tic
c= addme mex (a,b)
toc

You will see the execution times on the command line. Mex function is always faster than the script.

Exercise 4

Let’s do another example. You are given an example code from your Tutorial 6 — ‘Tute_6_5 _mex.m’.
This is the original code you tested last week.

In the given code, move the below code block to a new function called ‘findBoundaries’ and save it
in the same directory.

function findBoundaries (B,stats,threshold)
% loop over the boundaries
for k = l:length(B)

% obtain (X,Y) boundary coordinates corresponding to label 'k'
boundary = B{k};

% compute a simple estimate of the object's perimeter
delta sqg = diff (boundary).”2;
perimeter = sum(sqgrt (sum(delta sqg,2)));

% obtain the area calculation corresponding to label 'k'
area = stats (k) .Area;

% compute the roundness metric

metric = 4*pi*area/perimeter”2;

% display the results

metric string = sprintf('%2.2f',metric);

% mark objects above the threshold with a black circle
if metric > threshold

centroid = stats (k) .Centroid;

plot (centroid(l),centroid(2), 'ko'");
end

text (boundary(1l,2)-35,boundary(1l,1)+13,metric_string, 'Color','y',...
'FontSize', 14, 'FontWeight', 'bold'");

end

title(['Metrics closer to 1 indicate that ', ...
'the object is approximately round']);

end

= Call “findBoundaries’ function from your ‘Tute_6_5_mex.m’ code.
= Compare the speeds of two functions using tic,toc commands.

You can generate mex functions to most of your codes and speed up your programs.

You are advised to use mex files for your project to speed up the processing.

A video tutorial is available on: https://au.mathworks.com/videos/generating-c-code-from-matlab-
code-68964.html

https://au.mathworks.com/videos/generating-c-code-from-matlab-code-68964.html
https://au.mathworks.com/videos/generating-c-code-from-matlab-code-68964.html

