
Tutorial 7: Speeding up your MATLAB code

Mex file generation

You can use MATLAB coder app to generate MATLAB executable (mex) files. Mex files run faster

than the scripts.

Exercise 4

▪ Let’s create a simple program and save it as ‘Tute7_4.m’.

clear all, close all

a =3;
b=2;

c=a^2+b;

▪ Now, create a function to add two numbers.

clear all, close all

a =3;
b=2;

c = addme(a,b)

function c = addme(a,b)
c=a^2+b;
end

▪ Let’s move the function to a new file and save it as, ‘addme.m’.

▪ Now, we have two files- ‘Tute7_4.m’ and ‘addme.m’.

▪ We can convert our function into a mex file.

▪ From MATLAB apps menu, open MATLAB Coder.

▪ Select addme function and click Next.

▪ Next, you have to define input types for your function. This can be done by selecting the

main script which calls the ‘addme’ function. Browse and select ‘Tute7_4.m’ and click on

‘Autodefine Input Types’. Click Next.

▪ Then, MATLAB will check for runtime issues. In the next window, click on ‘Check for issues’.

▪ If no issues were detected you will see a window like below. Click Next.

▪ In the next window, select Build type as ‘MEX’, and click Generate.

▪ After generating the mex file, it will show a build succeeded message.

▪ Click Next.

Now, modify your ‘Tute8_4.m’ code as follows to use the mex file. New mex file does the same task

but it is faster.

clear all, close all

a =3;
b=2;
% c=addme(a,b);

c= addme_mex(a,b)

▪ Let’s check the speeds of the two functions by adding tic,toc commands.

clear all, close all

a =3;

b=2;

tic
c=addme(a,b);
toc

tic
c= addme_mex(a,b)
toc

You will see the execution times on the command line. Mex function is always faster than the script.

Exercise 4

Let’s do another example. You are given an example code from your Tutorial 6 – ‘Tute_6_5_mex.m’.

This is the original code you tested last week.

In the given code, move the below code block to a new function called ‘findBoundaries’ and save it

in the same directory.

function findBoundaries(B,stats,threshold)
% loop over the boundaries
for k = 1:length(B)

 % obtain (X,Y) boundary coordinates corresponding to label 'k'
 boundary = B{k};

 % compute a simple estimate of the object's perimeter
 delta_sq = diff(boundary).^2;
 perimeter = sum(sqrt(sum(delta_sq,2)));

 % obtain the area calculation corresponding to label 'k'
 area = stats(k).Area;

 % compute the roundness metric
 metric = 4*pi*area/perimeter^2;

 % display the results
 metric_string = sprintf('%2.2f',metric);

 % mark objects above the threshold with a black circle
 if metric > threshold
 centroid = stats(k).Centroid;
 plot(centroid(1),centroid(2),'ko');
 end

 text(boundary(1,2)-35,boundary(1,1)+13,metric_string,'Color','y',...
 'FontSize',14,'FontWeight','bold');

end

title(['Metrics closer to 1 indicate that ',...
 'the object is approximately round']);

end

▪ Call ‘findBoundaries’ function from your ‘Tute_6_5_mex.m’ code.

▪ Compare the speeds of two functions using tic,toc commands.

You can generate mex functions to most of your codes and speed up your programs.

You are advised to use mex files for your project to speed up the processing.

A video tutorial is available on: https://au.mathworks.com/videos/generating-c-code-from-matlab-

code-68964.html

https://au.mathworks.com/videos/generating-c-code-from-matlab-code-68964.html
https://au.mathworks.com/videos/generating-c-code-from-matlab-code-68964.html

